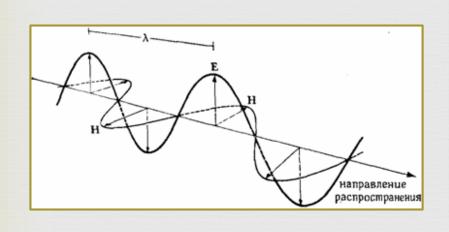

Атомно-эмиссионный анализ

03


Доцент кафедры химической метрологии ХНУ им. В.Н. Каразина к.х.н. К.Н. Беликов

Спектральные методы

анализа

Излучение: волна и частица

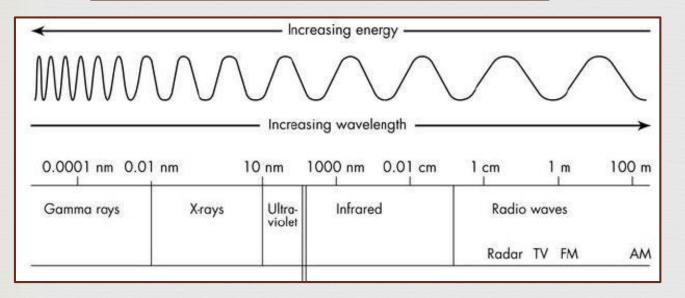
Длина волны λ (м)

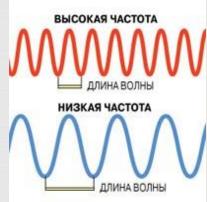
Скорость \boldsymbol{c} (м/с)

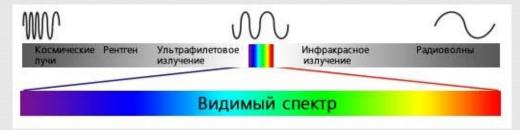
(в вакууме $2.9979.10^{-8}$ м/с)

Частота ν (с⁻¹)

Волновое число (число волн на единицу расстояния) $1/\lambda$


Энергия E = h v

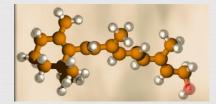

Мощность излучения — количество энергии, переносимой излучением в единицу времени, $P = E \Phi = h v \Phi$ (ватт)


Интенсивность излучения – мощность излучения от точечного источника на единицу телесного угла (ватт/стерадиан)

Частота и длина волны

 $\lambda = c/v;$ E = h v; $E = h c/\lambda$

Излучение: волна и


частица

Излучение как волна

Излучение как частица

Взаимодействие с массой вещества:

- **❖**Рассеяние;
- ❖Поляризация и оптическая активность;
- ❖Преломление (рефракция)

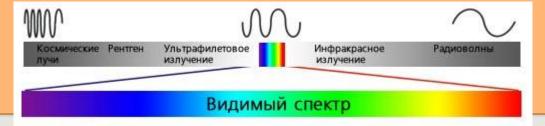
Взаимодействие с частицами вещества:

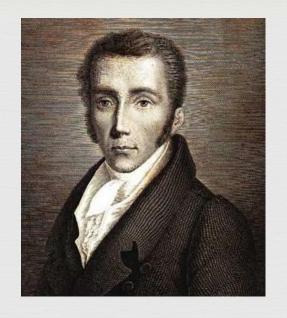
- **❖**Поглощение кванта;
- ❖Испускание кванта;

Оптические методы

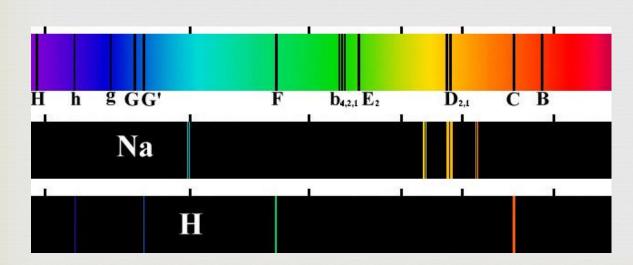
Дальняя УФ 10⁻⁸ -2·10⁻⁷ м 10-200 нм

Ближняя УФ 2·10-7 -4·10-7 м 200-380 нм


Видимая 4·10-7 -7.5·10-7 м 380-750 нм


Ближняя ИК 7.5·10⁻⁷ -2.5·10⁻⁶ м 0.75-2.5 мкм

Средняя ИК 2.5·10⁻⁶ -5·10⁻⁵ м 2.5-50 мкм


Дальняя ИК 5·10⁻⁵ -·0.001 м 50-1000мкм

- 1) Применяются похожие приборы (линзы и зеркала для фокусирования, призмы, дифракционные решетки, интерференционные фильтры);
- 2) Частоты сравнимы с собственными частотами атомов и молекул.

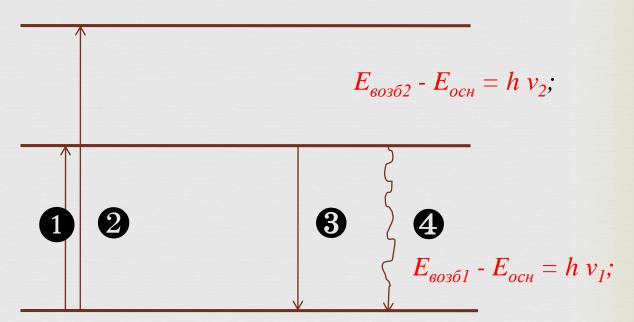
Йозеф Фраунгофер 1787-1826

Спектральный анализ

Роберт Вильгельм **Бунзен** 1811–1899

Густав Роберт **Кирхгоф** 1824 –1887

«Каждый элемент имеет свой линейчатый спектр, а значит строго определенный набор линий; подобные линии можно использовать для анализа состава веществ не только на Земле, но и на звездах»


Поглощение и испускание

света

Возбужденный уровень 2

Возбужденный уровень 1

Основной уровень

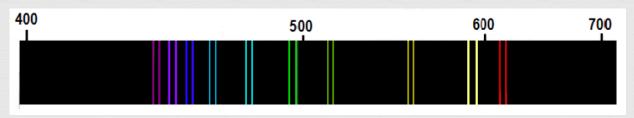
- **1,2** поглощение;
- 3 испускание;
- 4 безызлучательный переход

Методы атомно-эмиссионной спектроскопии основаны на термическом возбуждении свободных или слабо связанных атомов и ионов и регистрации их оптических спектров испускания

Качественный анализ

сопоставление длины волны наблюдаемой линии со значениями из атласов (библиотек) спектральных линий

Количественный анализ


Уравнение Ломакина (1930 г.): lg I = b lg C + lg a

Уравнение Шайбе (1931 г.): $I = aC^b$

Характеристики спектральных линий

Атомные спектры возникают при испускании или поглощении электромагнитного излучения ионами, свободными или слабо связанными атомами (в газах или парах) и состоят из отдельных спектральных линий (т.е. являются линейчатыми).

Эмиссионный спектр паров натрия

Атомные спектры обладают ярко выраженной индивидуальностью: каждому элементу соответствует свой спектр нейтрального атома и спектры последовательно образующихся положительно заряженных ионов.

Возникновение оптических спектров и их характер определяет система валентных электронов атомов.

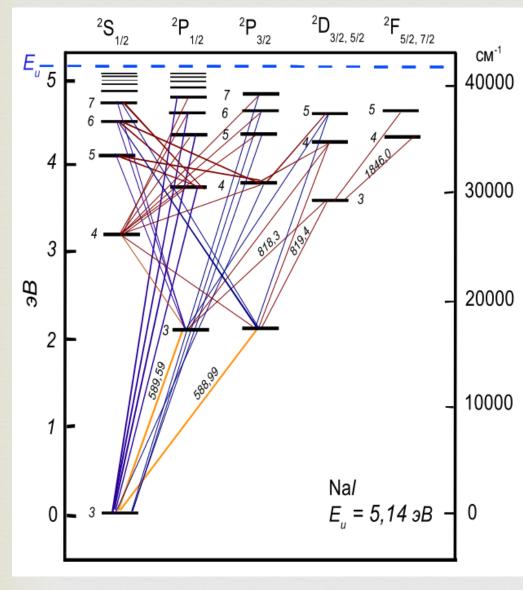


Схема электронных переходов в атоме натрия

Линии, обусловленные переходом электрона на основной уровень, принято называть **резонансными**.

Особое аналитическое значение имеют все резонансные линии, соответствующие переходам с первого возбужденного уровня.

Ввиду особой интенсивности этих линий, обеспечивающей большую чувствительность, их наиболее часто используют для аналитических целей.

По наличию в спектре образца характеристических для данного элемента линий можно провести качественный элементный анализ объекта.

Для получения количественной информации необходимо измерять интенсивность спектральной линии определяемого элемента.

Интенсивность эмиссионных спектральных линий

Интенсивность спектральной линии — это мощность электромагнитного излучения, спонтанно испускаемого единицей объёма вещества и обусловленного определенным квантовым переходом в атомах исследуемого элемента.

Интенсивность спектральной линии, соответствующей переходу атома из возбужденного состояния в состояние с меньшей энергией, связана с числом фотонов n, которые испускает источник за время Δt , и энергией фотона hv:

$$I = \frac{nh\nu}{\Delta t}$$

Число фотонов с энергией $h\nu$, испускаемых единицей объема газа, содержащего определяемый элемент, связано с числом атомов, которые находятся в возбужденном состоянии N_m и вероятностью спонтанного излучения по Эйнштейну A_{mk} (число переходов, происходящих за 1 секунду с уровня m на уровень k):

$$n = N_m A_{mk} \Delta t$$

$$I = N_m A_{mk} h v$$

Число атомов N_m , которые находятся в возбужденном состоянии, зависит от температуры Т и описывается распределением Больцмана.

$$I = h \nu N A_{mk} \frac{g_m}{g_0} e^{-\frac{E_m}{kT}}$$

 $g_{m'}$ g_0 – статистические веса состояния m и основного состояния атома, E_m – энергия состояния m.

Интенсивность непосредственно связана с числом искомых атомов, находящихся в заданном объеме газовой фазы.

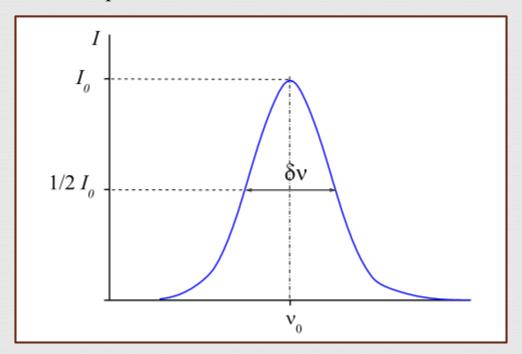
С ростом температуры возрастает отношение заселенностей уровней N_m/N и интенсивность линий.

Однако интенсивность атомных линий растет только до определенного значения температуры, а затем начинает понижаться. Это обусловлено протеканием процессов ионизации.

Увеличение энергии теплового столкновения приводит к тому, что часть атомов приобретает энергию, превышающую энергию ионизации и превращается в ионы.

В эмиссионном спектре появляются новые, ионные линии, а интенсивность атомных линий понижается.

$$I = (1 - \alpha)h\nu NA_{mk} \frac{g_m}{g_0} e^{-\frac{E_m}{kT}}$$


Таким образом, зависимость интенсивности линий от температуры проходит через максимум, называемый **оптимальной температурой**, положение которого для каждой линии каждого элемента различно. Наименьшая оптимальная температура характеризует линии элементов с низкой энергией ионизации.

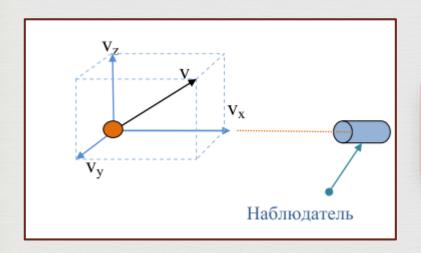
Минимальные значения пределов обнаружения достигаются при температурах, близких к оптимальной температуре.

Ширина спектральной линии

Ширина спектральной линии - это мера ее немонохроматичности.

Определяется как расстояние $\delta\lambda$ ($\delta\nu$) между точками контура спектральной линии, в которых интенсивность равна половине её максимального значения:

Три фактора, определяющие ширину линии – естественная ширина и уширения, обусловленные эффектами Лоренца и Доплера.


Естественная ширина спектральной линии обусловлена квазидискретным характером величины энергии возбужденного уровня:

$$\delta\lambda = \frac{\lambda^2}{c} \frac{1}{2\pi\tau_k}$$

Если время жизни возбужденного состояния атомов составляет 10^{-8} с, то для резонансной линии $\lambda = 500$ нм ее естественная ширина составляет $1,33\cdot 10^{-5}$ нм

Реальная ширина спектральных линий значительно выше, поскольку определяющий вклад в их ширину вносят эффекты Доплера и Лоренца.

Доплеровское уширение линий

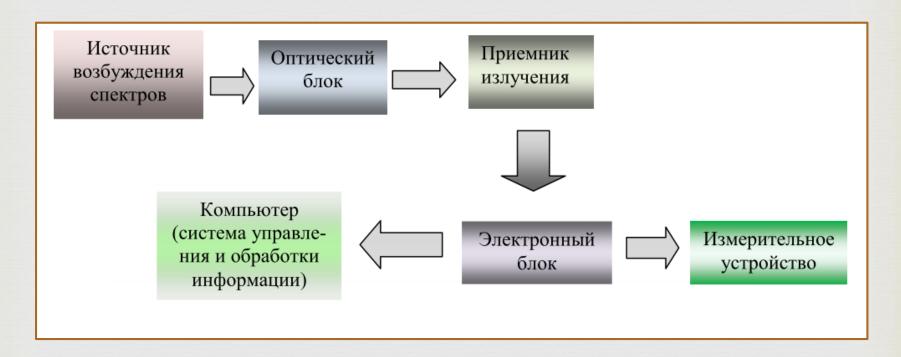
$$\delta \lambda_{\rm D} = 2\sqrt{2 \ln 2} \, \lambda_0 \sqrt{\frac{1000 RT}{A_3 c^2}} = 7.2 \cdot 10^{-7} \lambda_0 \sqrt{\frac{T}{A_3}}$$

Для линии натрия ($A_3 = 23$) с длиной волны 589,0 нм при температуре T = 2000 °K доплеровская ширина равна $3,95\cdot10^{-3}$ нм, т. е. больше естественной ширины на два порядка.

Уширение спектральных линий, обусловленное эффектом Доплера, значительно превышает естественную ширину и зависит от температуры атомного пара, а также массы атома определяемого элемента.

Ударное уширение линий (эффект Лоренца)

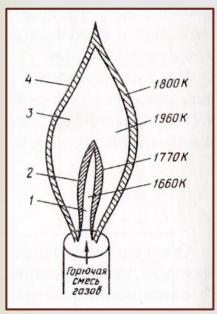
Процесс столкновения приводит к нарушению (обрыву) процесса излучения классического осциллятора. В результате этого наблюдаемое время жизни уменьшается. Это приводит к уширению контура излучаемой линии.


$$\delta v_L \approx \frac{1}{\tau_c} \approx \pi d^2 \frac{PN_A}{RT} \sqrt{\frac{kT}{m}} = \pi d^2 \frac{PN_A}{RT} \sqrt{\frac{3000RT}{A_3}} = \pi d^2 PN_A \sqrt{\frac{3000}{RTA_3}}$$

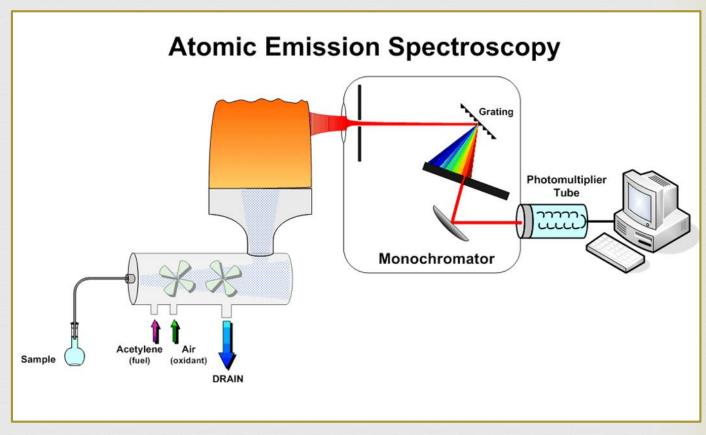
Для линии натрия ($A_9 = 23$) с длиной волны 589,0 нм при температуре $T = 8000\,$ °K лоренцевская ширина имеет величину порядка $2\cdot 10^{-3}\,$ нм, т. е. больше естественной ширины на два порядка и близка к доплеровскому уширению.

Ударное уширение спектральных линий зависит от давления, температуры атомного пара, а также от диаметра и массы атома определяемого элемента.

Аппаратурное обеспечение



Источник	Условия	Температура, ⁰С
Пламя	Жидкая проба впрыскивается в пламя; горючий газ и окислитель	От 900 до 3200


- Пламя должно быть высоко прозрачным (невысокая оптическая плотность во всем спектральном интервале от 190 до 860 нм).
- Собственное излучение пламени должно быть слабым.
- Эффективность атомизации в пламени должна быть как можно большей.
- Степень ионизации определяемого элемента должна быть низкой.

Состав горючей смеси	Температура пламени, °К
Метан - воздух	1970
Пропан-бутан - воздух	2200
Ацетилен - воздух	2450
Ацетилен - закись азота	3200
Водород - воздух	2300
Водород - закись азота	2900
Пропан-бутан - закись азота	2900

Пламенная атомно-эмиссионная спектроскопия

- 1 восстановительная зона;
- 2 внутренний конус;
- 3 окислительная зона;
- 4 внешний конус

Процессы в атомизаторе

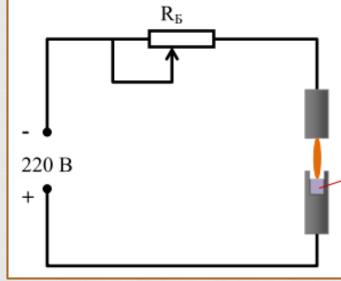
Спектроскопические буферы

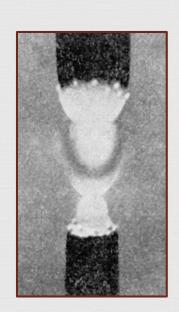
Физико-химические помехи:

- ✓ неполнота испарения и атомизации;
- ✓ образование тугоплавких и малодиссоциированных соединений;
- ✓ ионизация:

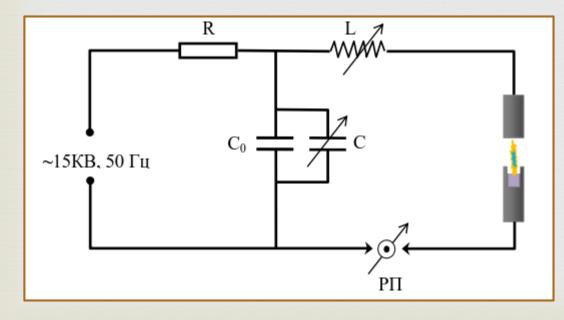
$$M = M^+ + e$$

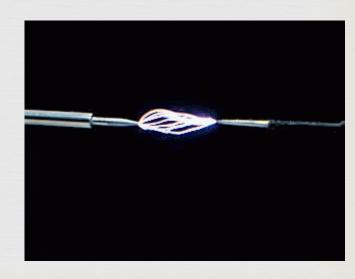
Добавляемые вещества:

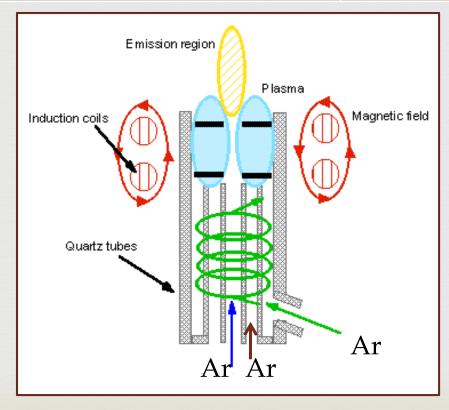

- ✓ ΠΑΒ;
- ✓ соли La; комплексообразователи;
- ✓ легкоионизируемые элементы $K = K^+ + e$

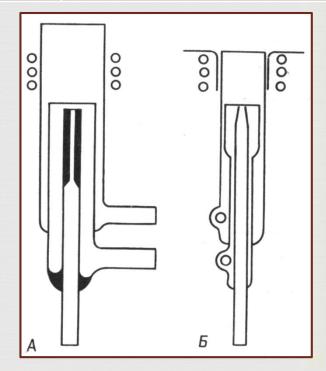

Типы буферов:

- Освобождающие
- Защитные
- Испаряющие
- Ионизационные

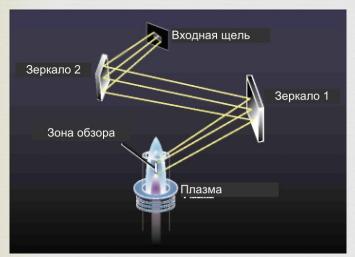

Источник	Условия	Температура, ⁰ С
Электрическая дуга (эл.	10-25, 220 B,	3000-7000
разряд между	Проба наносится	
электродами)	на электрод	

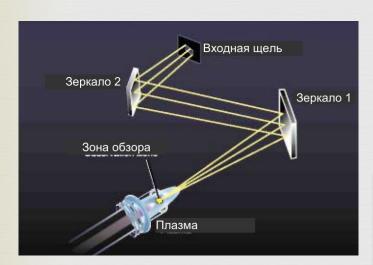





Источник	Условия	Температура, ⁰ С
Электрическая искра (короткие разряды между электродами)	15-40 кВ, 120 вспышек в секунду, 10 ⁴ -10 ⁵ Гц	От 7000 до 10000 и 12000 - 30000 в канале искры

Источник	Условия	Температура, ⁰ С
Горелка с индуктивно- связанной плазмой (ИСП)	Плазма в магнитном поле. Жидкая проба	7000 до 10000


Типы горелок: **А** – горелка Гринфилда; Б – горелка Фассела-Скотта


Индуктивно-связанная плазма (ИСП) — это тип газового разряда, возбуждаемого переменным магнитным полем при помощи индукционной катушки (индуктора).

ИСП зажигается и поддерживается за счёт циклических индуцированных вихрей электрического тока свободных электронов (и ионов) в плазме.

Работающая при атмосферном давлении ИСП впервые описана Ридом в 1961 г. и использовалась как метод выращивания кристаллов при высокой температуре.

Сравнение пределов обнаружения для спектрометров Vista-Pro (Varian) с радиальным и аксиальным расположением горелки

		Предел обнаружен	ия (3σ), мкг/л
Элемент	Длина волны, нм	Vista-Pro Radial	Vista-Pro Axial
Al	167,016	0,9	0,2
As	188,979	5	1,5
В	249,773	0,6	0,1
Ва	455,403	0,15	0,03
Ве	234,861	0,05	0,01
Ca	396,847	0,06	0,01
Cd	214,438	0,6	0,05
Co	238,892	1	0,2
Cr	267,716	0,9	0,15
Cu	327,396	1	0,3
Fe	259,940	0,8	0,1
K	766,490	4	0,3
Li	670,784	1	0,06
Mg	279,553	0,04	0,01
Mn	257,610	0,08	0,03
Na	589,592	2	0,15
Ni	231,604	1,4	0,3
P	177,432	5	2
Pb	220,353	5	0,8
S	181,971	10	5
Ti	334,941	0,2	0,1
Zn	213,856	0,8	0,2

Плазма обладает высокой стабильностью.

При температурах 6000 – 10000 °К полностью диссоциирует подавляющее большинство соединений, что позволяет устранить влияние состава пробы на результаты анализа.

Обзор плазмы при анализе методом АЭС-ИСП

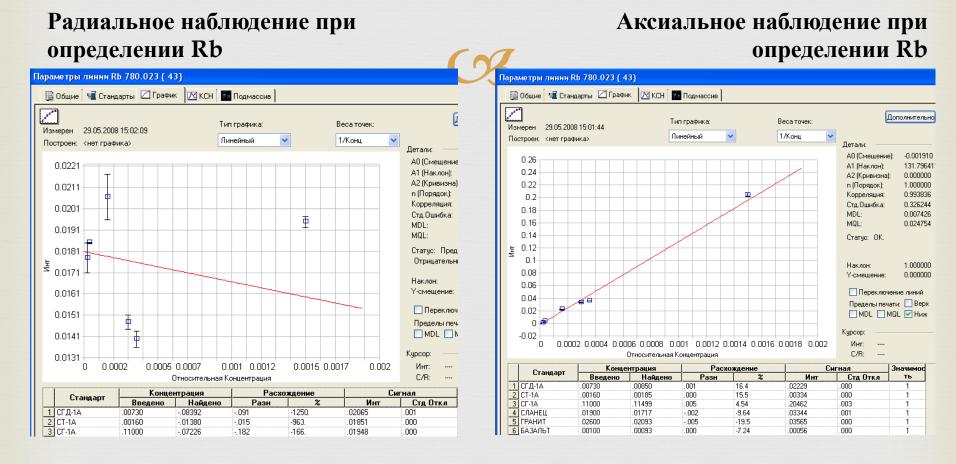
Какой вариант обзора плазмы выбрать:

Радиальный?

Аксиальный?

Обзор плазмы при анализе методом АЭС-ИСП

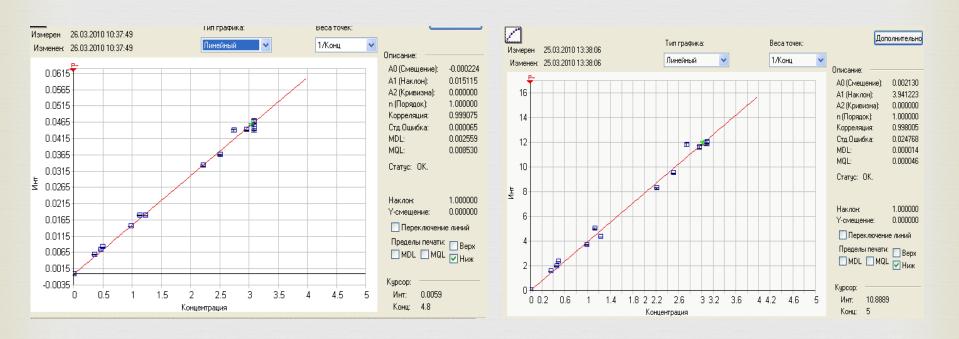
Правильный ответ: двойной обзор



Аксиальный

Двойной обзор необходим, чтобы использовать точность радиального обзора плазмы и высокую чувствительность аксиального обзора плазмы

Аксиальное наблюдение — для максимальной чувствительности при определении следовых количеств



При радиальном обзоре плазмы чувствительность и точность при измерении интенсивности сигналов рубидия неудовлетворительна

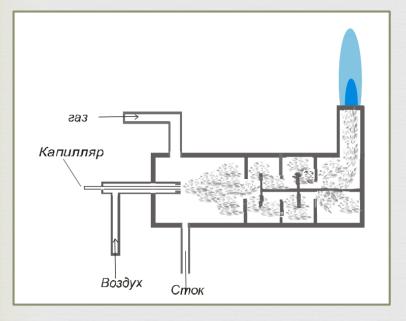
Радиальное наблюдение — для максимальной точности при определении матричных элементов

Радиальное наблюдение при определении Калия, Коэффициент корреляции – 0.9991

Аксиальное наблюдение при определении Калия, Коэффициент корреляции – 0.9980

При радиальном обзоре плазмы воспроизводимость и точность определения матричных элементов лучше

Основные достоинства метода ICP-AES


- Возможность определения в аргоновой плазме всех элементов, в том числе трудновозбудимых, а также образующих тугоплавкие соединения
- Линейный динамический диапазон до пяти порядков, что делает этот метод анализа уникальным среди спектральных методов
- Низкие пределы обнаружения. Для большинства элементов на уровне долей ppb

- Возможность одновременного определения в образце до 70 элементов
- Малый расход анализируемого раствора, что делает метод пригодным для исследования биологических проб и нанообъектов
- Высокая воспроизводимость и точность анализа
- Автоматизация, компьютерное управление, высочайшая продуктивность анализа

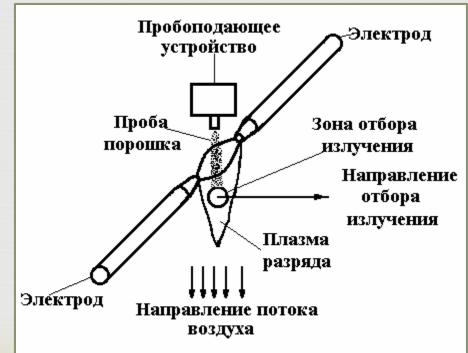

Источник	Спектр, прецизионность	Условия возбуждения
Пламя	Достаточно яркий и стабильный. Линий немного. s_r 1-5 %	Mg, Cu, Mn, Tl, ЩМ и Щ3M.
Электрическая дуга	Яркий. Линий очень много (радикалы, атомы, ионы). $s_r 5-20 \%$	Почти все элементы; Низкая воспроизводимость условий возбуждения.
Электрическая искра	Яркость низкая, s _r 1-10 %	Стабильные. Меньше самопоглощение. Низкие пределы определения.
Горелка с индуктивно- связанной плазмой (ИСП)	Стабильный спектр, прецизионный сигнал. $s_r < 1 \%$	Стабильные. Почти все элементы. Низкие пределы определения. Высокая концентрация электронов.

Системы ввода пробы в атомизатор

Пламя

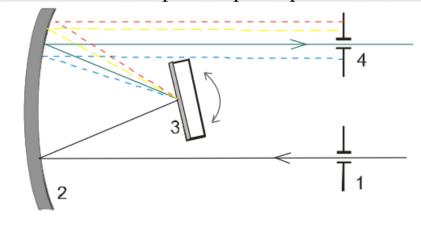
Плазма

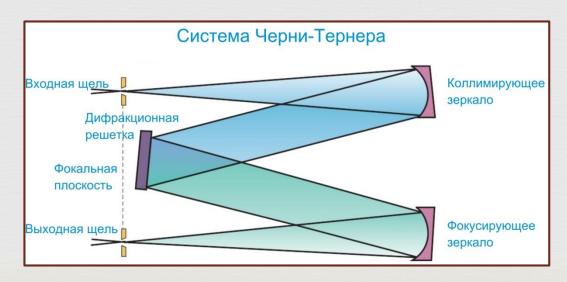
Перистальтический насос



Распылитель

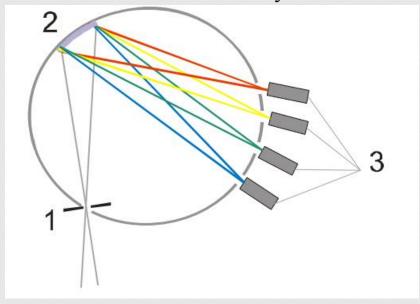
Возбуждение в дуге или искрой

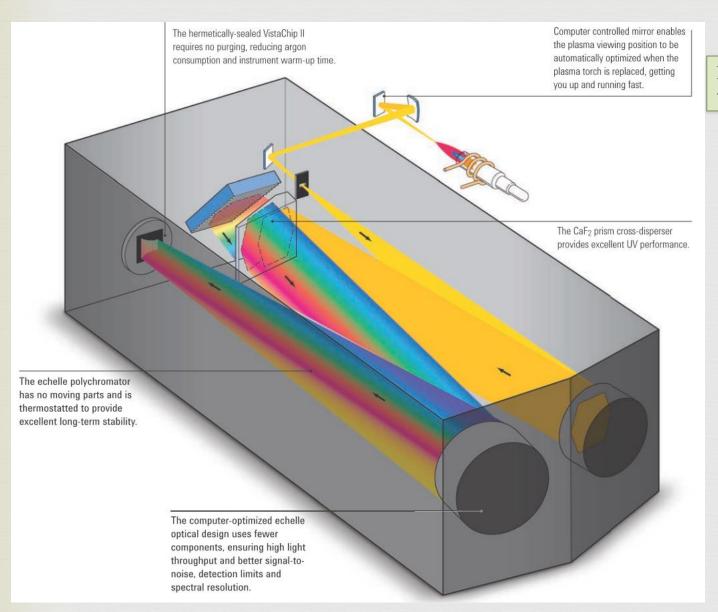

Электрод с кратером для пробы



Метод просыпки-вдувания

Монохроматоры


Монохроматор Эберта



Полихроматоры

Схема Пашена-Рунге

1 – входная щель; 2 – дифракционная решетка; 3 – выходные щели и детекторы

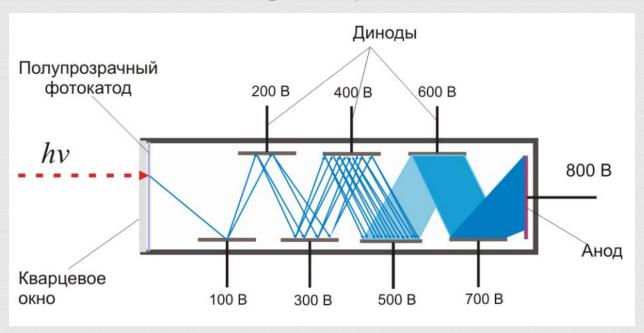
Разрешающая способность < 10 пм

Приемники оптического излучения и классификация методов АЭС на основе способов регистрации сигнала

Патанта	Область спек-	Время	Чувствитель-		
Детектор	тральной чувстви-	срабатыва-	ность		
	тельности, <i>нм</i>	ния, с			
Человеческий глаз	400 – 700	0,1	Умеренная		
Вакуумный фотоэлемент	190 – 1100 (зави- сит от катода)	10-9	Высокая		
Фотоэлектронный умножитель (ФЭУ)	105 – 1100 (зави- сит от катода)	10-8	Очень высокая		
Лавинный фотодиод	450 – 1200	10-10	Умеренная		
Фоторезистор (CdS)	400 – 800	0,1	Низкая		
Кремниевый фотодиод	350 – 1200	10-8	Высокая		
Приборы с зарядовой связью (ПСЗ)	<180 – 1000	10-8	Очень высокая		

Спектрографический анализ

• Фотографирование спектра


Спектрометрический анализ

• Прямое измерение интенсивности линий

Визуальный анализ

• Стилоскоп

Фотоэлектронный умножитель

Полупроводниковый детектор

Количественный анализ

Метод внешнего стандарта

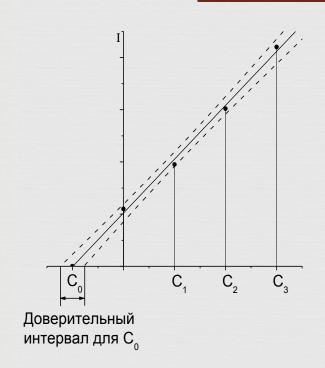
Градуировка – последовательность действий, направленная на установление соответствия между показаниями измерительной системы и соответствующими характеристиками образцов сравнения

Линейная и нелинейная аппроксимация МНК зависимости аналитического сигнала от концентрации элемента

$$I = a + bC$$
; $I = a + b_1C + b_2C^2$ и др.

Мешающие влияния

Правильность анализа → отсутствие систематических погрешностей


При условии хорошей воспроизводимости сигналов основной причиной погрешностей является неадекватность градуировочных фукций

Методы коррекции матричных эффектов

- Отделение анализируемых элементов от матрицы;
- Поддержание одинакового состава анализируемых и градуировочных образцов;
- Метод внутреннего стандарта;
- Метод стандартных добавок;
- Тщательный выбор условий возбуждения спектров;
- Хемометрические методы

Метод стандартных добавок

Эффективен для устранения матричных влияний в случае невозможности использования адекватных градуировочных образцов

Существенным недостатком МСД является то, что начальное содержание аналита оценивается в области больших доверительных интервалов.

При условии, что объемы добавок пренебрежимо малы по сравнению с объемом пробы, начальное содержание аналита рассчитывают по формуле (для одной добавки):

$$C_0 = C_1 I_0 / (I_1 - I_0)$$

Метод внутреннего стандарта

Позволяет улучшить правильность анализа за счет компенсации временного дрейфа сигнала и нивелирования (в ряде случаев) матричных эффектов

При проведении калибровки внутренний стандарт добавляют в смесь стандартных образцов и проводят вычисление факторов отклика:

$$k1 = (I_{cT}^{IS}/I_{cT}^{-1}) * (C_{cT}^{-1}/C_{cT}^{IS})$$
, и т.д.,

где

k1 – фактор отклика для 1-ого аналита,

 I_{cr}^{-1} — сигнал стандарта 1-ого аналита,

 I_{cr}^{IS} – сигнал внутреннего стандарта,

 C_{cr}^{-1} – концентрация 1-ого аналита в стандартном образце,

 $C_{c\tau}^{\ \ IS}$ – концентрация внутреннего стандарта в стандартном образце.

$$C_{aH}^{-1} = k1 * (C^{IS}/I^{IS}) * I_{aH}^{-1}$$

где

 C_{aH}^{-1} – концентрация 1-ого аналита в объеме пробы,

k1 – фактор отклика для 1-ого аналита,

 I_{ah}^{-1} – сигнал 1-ого аналита,

I^{IS} – сигнал внутреннего стандарта,

C^{IS} – концентрация внутреннего стандарта в объеме пробы.

Преимущества метода:

- при использовании метода внутреннего стандарта ни объем вводимой пробы, ни точность ее дозирования никак не влияют на точность количественного анализа;
- возможность в каждом проводимом определении контролировать потери аналитов на любой стадии подготовки пробы;

Элементы, определяемые методом **ICP-AES**

¹ H	ICP-AES spectrometer TRACE SCAN Advantage Thermo Jarrell Ash Corp.										He He						
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	¹⁰ Ne
0.03	0.2											140					
11	12	13 14 15 16 17 18															
Na 2.0	Mg 0.02										Ar						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
10.0	0.02	0.2	0.3	1.0	0.6	0.1	0.5	0.75	1.0	0.5	0.3	0.2	0.2	5.0	5.0	20.0	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
12.0	0.05	0.3	0.9	0.9	1.0		0.8	0.8	0.8	0.75	0.3	1.5	3.0	5.0	3.0	10.0	
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
20.0	0.09	~2	1.0	0.9	1.1	0.6	0.5	0.4	0.2	0.1	2.0	5.0	4.0	5.0			
87	88	89-103	104	105													
Fr	Ra	Ac-Lr	Rf	Db													

38

←Порядковый номер элемента

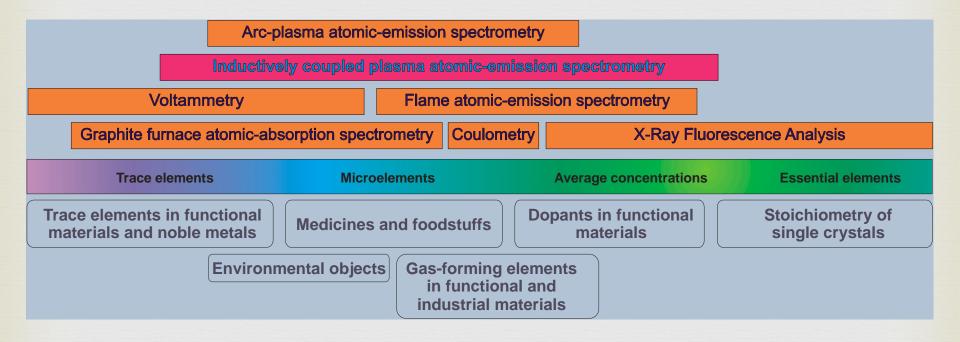
Sr

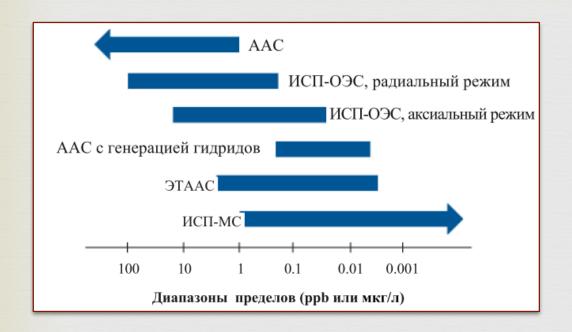
0.05

←Предел обнаружения, µг/л (3σ-критерий)

10.03.2016 18:36

55


←Символ элемента. Зеленым цветом обозначены элементы, определяемые спектрометром


Сравнительная характеристика методов атомно-эмиссионной спектроскопии

Метод	Характеристика атомизатора	Воспроизводимость результатов Пределы обнаружения	Состояние анализируемой пробы		
Пламенная АЭС	T = 900 – 3000 °C Высокая стабильность	$s_r = 0.01-0.05$ $c_{min} = 10^{-7} \%$	Раствор		
АЭС с дуговым возбуждением	T = 3000 – 7000 °C Низкая стабильность	$s_r = 0.05-0.2$ $c_{min} = 10^{-5} \%$	Твердая		
АЭС с искровым возбуждением	T = 7000 – 12000 °C Средняя стабильность	$s_r = 0.01-0.1$ $c_{min} = 10^{-3} \%$	Твердая		
ICP-AES	T = 6000 – 10000 °C Очень высокая стабильность	$s_r = \le 0.01$ $c_{min} = 10^{-8} \%$	Раствор, твердая (с приставкой для испарения пробы)		

56

Место методов атомно-эмиссионной спектроскопии среди других физических методов анализа

Пределы обнаружения

Основные области применения

- Металлургия;
- Геология;
- Биология и медицина;
- Функциональные материалы;
- Продукты питания;
- Топливная промышленность и т.д.

Чудинов Э.Г. Итоги науки и техники. ВИНИТИ. Сер. аналитическая химия. – 1990. - 2. - 251 с.